

REPORT

SUNNYSIDE COAL MINE -PARTICULATE MATTER CONTROL BEST PRACTICE POLLUTION REDUCTION PROGRAM

Whitehaven Coal Pty Ltd

Report No: 6680C

29 June 2012

PROJECT TITLE:	Sunnyside Mine Particulate Matter Control Best Practice Pollution Reduction Program
JOB NUMBER:	6680
PREPARED FOR:	Danny Young
	WHITEHAVEN COAL PTY LTD.
DATE OF RELEASE:	29 JUNE 2012
PREPARED BY:	Daniel Cullen
APPROVED FOR RELEASE BY:	Ronan Kellaghan
DISCLAIMER & COPYRIGHT:	This report is to be read subject to the disclaimer and copyright statement located at <u>www.paeholmes.com</u> © Queensland Environment Pty Ltd trading as PAEHolmes ABN 86 127 101 642

DOCUMENT CONTROL										
VERSION	DATE	PREPARED BY	REVIEWED BY							
R1	29/06/12	D. Cullen	R. Kellaghan							

Queensland Environment Pty Ltd trading as **PAEHolmes** ABN 86 127 101 642

SYDNEY:

Suite 203, Level 2, Building D, 240 Beecroft Road Epping NSW 2121 Ph: +61 2 9870 0900 Fax: +61 2 9870 0999

BRISBANE:

Level 1, La Melba, 59 Melbourne Street, South Brisbane QLD 4101 PO Box 3306, South Brisbane QLD 4101 Ph: +61 7 3004 6400 Fax: +61 7 3844 5858

ADELAIDE:

35 Edward Street, Norwood SA 5250 PO Box 1230, Littlehampton SA 5250 Ph: +61 8 8332 0960 Fax: +61 7 3844 5858

Email: info@paeholmes.com

Website: www.paeholmes.com

PERTH:

Level 18, Central Park Building, 152-158 St Georges Terrace, Perth WA 6000 Ph: +61 8 9288 4522 Fax: +61 8 9288 4400

MELBOURNE:

Suite 62, 63 Turner Street, Port Melbourne VIC 3207 PO Box 23293, Docklands VIC 8012 Ph: +61 3 9681 8551 Fax: +61 3 9681 3408

GLADSTONE:

Suite 2, 36 Herbert Street, Gladstone QLD 4680 Ph: +61 7 4972 7313 Fax: +61 7 3844 5858

TABLE OF CONTENTS

1	INTRODUCTION	4						
1	1 Background	4						
1	2 PRP Requirements	4						
1	3 Overview of Mining Operations at Sunnyside	6						
1	4 Mining Activity and Emission Factors	6						
2	EXISTING MEASURES USED TO MINIMISE PARTICLE EMISSIONS	8						
2	1 Estimated Emissions – No Controls	8						
2	2 Estimated Emissions – Existing Controls	8						
2	3 Activities Rank – Existing Controls	10						
3	PRACTICABILITY OF IMPLEMENTING ADDITIONAL BEST PRACTICE MEASURES	12						
3	1 Estimated Emissions for Practical BPM	22						
3	2 Implementation Cost Evaluation	22						
4	IMPLEMENTATION OF ADDITIONAL BPM	23						
4	1 Monitoring and tracking the Effectiveness of BPM	23						
5	REFERENCES	24						
APP	ENDIX A : EMISSION FACTOR EQUATIONS	A-1						
APP	ENDIX B : MINE ACTIVITY DATA	B-1						
APP	APPENDIX C : COSTING							

LIST OF TABLES

Table 1.1: PRP Guideline requirements and report reference 5
Table 1.2: PM-generating activities at coal mines (adapted from OEH, 2011)
Table 2.1: Summary of PM emissions with no controls in place (tonnes/year)8
Table 2.2 Summary of Existing Air Quality Controls 9
Table 2.3: Summary of PM emissions with current controls in place (tonnes/y)10
Table 2.4: Activity rank of the estimated controlled emissions by mass
Table 3.1: BPM to reduce particulate matter emissions from haul roads 13
Table 3.2: BPM to reduce particulate matter emissions from bulldozers on overburden
Table 3.3: BPM to reduce particulate matter emissions from loading and unloading coal16
Table 3.4: BPM to reduce particulate matter emissions from wind erosion of overburden dumps17
Table 3.5: BPM to reduce particulate matter emissions from loading and unloading overburden18
Table 3.6: BPM to reduce particulate matter emissions from remaining activities 19
Table 3.7: Estimated Emissions for Practical BPM 22

1 INTRODUCTION

The Sunnyside Coal Mine is an open-cut mine owned by Namoi Mining Pty Ltd. and operated by Whitehaven Coal Mining Pty Ltd. The mine is located in the Gunnedah basin, approximately 15 km west of Gunnedah, 2 km north of the Oxley Highway in Northern NSW.

The mine commenced operation in 2009 and is currently licensed to extract up to 1 million tonnes per annum (Mtpa) of ROM coal. The Sunnyside operation will have exhausted existing coal reserves within the next 2 years.

1.1 Background

In 2011, the NSW Environmental Protection Agency (EPA)^a published the document '*NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and/or Minimise Emissions of Particulate Matter from Coal Mining*' (hereafter called 'the Best Practice Report') (**Donnelly et al., 2011**).

As an outcome of the Best Practice Report, EPA developed a Pollution Reduction Program (PRP) that requires each mine company to prepare a report on the practicability of implementing best practice measures to reduce particle emissions.

The Coal Mine Particulate Matter Control Best Practice PRP is included in the Environmental Protection Licences for each coal mine in NSW.

1.2 PRP Requirements

The PRP requires the Licensee (the mine company) to conduct a site-specific Best Management Practice (BMP) and to prepare a report on the practicability of implementing measures to reduce emissions of particulate matter (PM). The report must include the following:

- The identification, quantification and justification of the measures that are currently being used to reduce PM emissions.
- The identification, quantification and justification of 'best practice' measures that could be used to minimise PM emissions.
- An evaluation of the practicability of implementing the best practice measures.
- A proposed timeframe for implementing all practicable best practice measures.

In preparing the report the Licensee must refer to the document entitled *Coal Mine Particulate Matter Control Best Practice – Site Specific Determination Guideline* (referred to as the Guideline) **(OEH, 2011)**, which details the process to be followed in the PRP. It also provides the required content and format of the PRP. **Table 1.1** presents a summary of the Guideline requirements and a reference to the relevant section in this report.

^aThe NSW EPA exists as a separate statutory authority within the Office of Environment and Heritage (OEH) which came into existence in April 2011. OEH was previously part of the Department of Environment, Climate Change and Water (DECCW). The DECCW was also recently known as the Department of Environment and Climate Change (DECC), and prior to that the Department of Environment and Conservation (DEC). The terms NSW EPA, OEH, DECCW, DECC and DEC are used interchangeably, where appropriate, in this report.

	Gui	ne Requirement	Report Reference	
1)	Identification, quantification and justification of existing measures that are being used to minimise particle emissions	a.	Estimate baseline emissions of TSP, PM_{10} and $PM_{2.5}$ (tonne per year) from each mining activity using US EPA AP-42 emission estimation techniques for both uncontrolled emissions (with no particulate matter controls in place) and controlled emissions (with current particulate matter controls in place).	Section 2
		b.	Rank the controlled emission estimates for TSP, PM_{10} and $PM_{2.5}$ emitted by each mining activity from highest to lowest.	Section 2.3
		C.	Identify the top four mining activities that contribute the highest emissions of TSP, PM_{10} and $PM_{2.5}$.	Section 2.3
2)	Identification, quantification and justification of best practice measures that	a.	For each of the top four activities identified in Step 1(c) identify the measures that could be implemented to reduce emissions.	Section 3
could be used to minimise particle emissions			For each of the top four activities identified in Step 1(c) estimate emissions of TSP, PM_{10} and $PM_{2.5}$ from each mining activity following the application of the measures identified in Step 2 (a).	Section 3.1
3)	Evaluation of the practicability of implementing these best practice measures	a.	For each of the best practice measures identified in Step 2(a), assess the practicability associated with their implementation, by taking into consideration: i. Implementation costs ii. Regulatory requirements iii. Environmental impacts iv. Safety implications and v. Compatibility with current processes and proposed future developments.	Section 3 and Section 3.2
		b.	Identify those best practices that will be implemented at the premises to reduce particle emissions.	Section 4
4)	A proposed timeframe for implementing all practicable best practice measures	a.	For each of the best practice measures identified as being practicable in step 3(b), provide a timeframe for their implementation.	Section 4

Table 1.1: PRP Guideline requirements and report reference

1.3 Overview of Mining Operations at Sunnyside

Mining operations are conducted between 7:00am to 10:00pm each Monday to Friday and 7:00am to 6:00pm on Saturdays. No mining occurs on Sundays or public holidays.

All mining during the reporting period was undertaken by open cut methods using the techniques identified in the Mine Operations Plan (MOP), namely:

- Topsoil and subsoil removal by open bowl scraper;
- Friable overburden removal by scraper;
- Drilling and blasting the underlying competent overburden;
- Overburden (and interburden) removal by bulldozers and/or excavator and dump trucks, with the overburden placed in waste emplacements.
- Coal extraction by excavator loading into haul trucks for transport to the ROM stockpile.

With the exception of coal crushing to <150 mm, no coal processing is undertaken at Sunnyside with ROM coal transported to the Whitehaven Coal Handling and Preparation Plant (CHPP).

1.4 Mining Activity and Emission Factors

The Best Practice Guideline defines mining activities in the Site-specific Determination Guideline. Not all of these activities necessarily occur at the Sunnyside Coal Mine (SCM) during the PRP reporting period and for the purposes of emission estimation, some activities are grouped.

The activities included in the emission estimation for the PRP are shown in Table 1.2.

The minor changes to the EPA defined activities are:

- For some of the activities in the Site-specific Determination Guideline (such as unloading coal and loading coal), the emission calculation method and potential controls are essentially the same, and in such instances the mining activities have been grouped.
- The EPA didn't include certain activities (vegetation clearance, topsoil removal, rehabilitation, ventilation shafts (for underground mines) and where relevant, these activities have been added.

The relevant emission factors for each of these activities are presented in **Appendix A**.

General Activity	Specific Activity	Relevant to Sunnyside Coal Mine
Surface preparation	Vegetation clearance/removal	Yes
	Topsoil and subsoil removal with scrapers	Yes
	Topsoil removal with bulldozers/excavators	No
	Topsoil loading to trucks & unloading	No
	Hauling topsoil	No
Overburden and	Drilling	Yes
interburden removal	Blasting	Yes
	Draglines	No
	Bulldozers ripping/pushing/clean-up	Yes
	Loading to trucks & unloading at emplacement	Yes
	Hauling to emplacement	Yes
Coal removal	Drilling	No
	Blasting	No
	Bulldozers ripping/pushing/clean-up	Yes
	Loading truck with ROM coal, unloading to ROM pad / hopper	Yes
	Re-handle of ROM	Yes
	Hauling ROM coal	Yes
	Coal transfer operations ^(a)	Yes
	Screening	Yes
	Crushing	Yes
	Bulldozing on ROM stockpiles	Yes
	Bulldozing on product stockpiles	Yes
Wind erosion	Exposed areas, including overburden dumps	Yes
	Active coal stockpiles	Yes
Road Maintenance	Graders on haul roads	Yes
Rehabilitation	Bulldozing on rehab	Yes
Mine Ventilation	Ventilation Shaft Emissions	No

Table 1.2: PM-generating activities at coal mines (adapted from OEH, 2011)

Note: ^(a)*e.g.* coal > ROM stockpile from conveyor, coal from ROM hopper to conveyor, unloading to trains from conveyor, *etc.*

2 EXISTING MEASURES USED TO MINIMISE PARTICLE EMISSIONS

Emissions were calculated using the relevant USEPA AP-42 emission estimation techniques for both uncontrolled emissions and controlled emissions (**Appendix A**) and activity data provided by the mine (**Appendix B**).

2.1 Estimated Emissions – No Controls

TSP, PM_{10} and $PM_{2.5}$ emission estimates have been calculated for mining activities that occurred during June 2010 – July 2011 at the SCM.

Emission estimates have been made with no particulate matter controls in place (uncontrolled -**Table 2.1**).

PRP activity	TSP	PM ₁₀	PM _{2.5}							
Blasting	1.6	0.8	0.05							
Bulldozers on Coal	24.5	7.5	0.54							
Bulldozers on OB	164.5	39.7	17.28							
Coal crushing	0.8	0.4	0.00							
Coal Screening	3.9	2.7	0.09							
Drilling	1.5	0.8	0.04							
Graders	11.5	4.0	0.36							
Hauling on Unsealed Roads	1,942.6	524.3	52.43							
Material Transfer Coal	0.2	0.1	0.01							
Material Transfer OB	21.0	0.0	0.00							
Trucks Loading & Unloading OB	46.8	22.1	3.35							
Trucks Loading and Unloading coal	89.7	13.4	1.70							
Wind Erosion & Maintenance - Stockpiles	37.2	18.6	2.79							
Wind Erosion Exposed Areas / Dumps	52.4	26.2	3.93							
Grand Total	2,398.2	660.7	82.58							

 Table 2.1: Summary of PM emissions with no controls in place (tonnes/year)

2.2 Estimated Emissions – Existing Controls

Emissions were then recalculated taking into account various control factors for the dust controls that Sunnyside mine have in place. These controls, as well as the control factor applied, are listed in **Table 2.2**. The control factors adopted are the default values contained within the Best Practice Report (**Donnelly et al., 2011**).

PRP Activity Category	Existing Control	EPA level of control (%)	Control applied (%)		
Hauling on Unsealed Roads	Water carts on all trafficked areas	75	75		
	Minimise pre-strip (reduction applies to area avoided).	100			
Wind Erosion on OB area	Rehabilitation goals	99	0		
	Progressive Rehabilitation (vegetative ground-cover)	70			
	In pit dumping	30-80			
the discount contraction	Minimise excavator drop height	-			
overburden	Truck or loader drop height limited to 20 m instead of 40 m.	30	0		
Dozers on OB	Bulldozers on OB locked in 2 nd gear to minimise travel speed	-	0		
DIW	Water injection on all drill rigs	3-96	50		
Drilling	Dust curtains in use	-	50		
Blasting	Delay shot to avoid unfavourable weather conditions	-	0		
Cruching	Crusher enclosed	-	50		
Crusning	Watering	50	50		
	Water sprays on at transfer points	50			
Material Transfer of Coal	Scrapers used on conveyors	-	50		
	Crusher enclosed	-			
Wind Erosion – stockpiles	Coal stockpiles kept at relatively low height due to constant load-out	30	30		
Trucks Loading and Unloading Coal	Truck or loader dumping coal - always dropped to ground (rather than at height)	30	0		
Grading roads	Graders average 7.5 km/h	75	0		
Topsoil removal and emplacement	Scrapers are used to strip and emplace topsoil, hence no haulage of topsoil	-	0		

Table 2.2 Summary of Existing Air Quality Controls

A summary of the predicted annual emissions incorporating current dust controls is provided in **Table 2.3**.

PRP activity	TSP	PM10	PM _{2.5}								
Blasting	1.6	0.8	0.05								
Bulldozers on Coal	24.4	7.5	0.50								
Bulldozers on OB	164.5	39.7	17.28								
Coal crushing	0.4	0.2	0.00								
Coal Screening	3.9	2.7	0.09								
Drilling	0.4	0.8	0.01								
Graders	11.5	4.0	0.36								
Hauling on Unsealed Roads	485.6	131.1	13.11								
Material Transfer Coal	0.1	0.0	0.01								
Material Transfer OB	21.0	0.0	0.00								
Trucks Loading & Unloading OB	46.8	22.1	3.35								
Trucks Loading and Unloading coal	89.7	13.4	1.70								
Wind Erosion & Maintenance - Stockpiles	37.1	13.0	1.95								
Wind Erosion Exposed Areas / Dumps	52.4	26.2	3.93								
Grand Total	939.6	261.7	42.35								

Table 2.3: Summary of PM emissions with current controls in place (tonnes/y)

2.3 Activities Rank – Existing Controls

Activities are ranked in terms of total annual emission (existing controls) and presented in **Table 2.4**. In accordance with the Best Practice Guideline, the top four ranked activities according to estimated mass particulate emissions for TSP, PM_{10} and $PM_{2.5}$ are shown in bold.

An evaluation of Best Practice measures for following activities is therefore presented in **Section 3**.

- Hauling On Unsealed Roads;
- Bulldozers on Overburden;
- Loading and Unloading Coal;
- Wind Erosion on exposed areas; and
- Trucks loading and unloading overburden

Rank	Mine activity	(tonnes/yr)
	TSP	
1	Hauling on Unsealed Roads	485.6
2	Bulldozers on OB	164.5
3	Trucks Loading and Unloading coal	89.7
4	Wind Erosion Exposed Areas / Dumps	52.4
5	Trucks Loading & Unloading OB	46.8
6	Wind Erosion & Maintenance - Stockpiles	37.1
7	Bulldozers on Coal	24.4
8	Material Transfer OB	21.0
9	Graders	11.5
10	Coal Screening	3.9
11	Blasting	1.6
12	Drilling	0.4
13	Coal crushing	0.4
14	Material Transfer Coal	0.1
	PM ₁₀	
1	Hauling on Unsealed Roads	131.1
2	Bulldozers on OB	39.7
3	Wind Erosion Exposed Areas / Dumps	26.2
4	Trucks Loading & Unloading OB	22.1
5	Trucks Loading and Unloading coal	13.4
6	Wind Erosion & Maintenance - Stockpiles	13.0
7	Bulldozers on Coal	7.5
8	Graders	4.0
9	Coal Screening	2.7
10	Blasting	0.8
11	Drilling	0.8
12	Coal crushing	0.2
13	Material Transfer Coal	0.0
14	Material Transfer OB	0.0
	PM _{2.5}	
1	Bulldozers on OB	17.28
2	Hauling on Unsealed Roads	13.11
3	Wind Erosion Exposed Areas / Dumps	3.93
4	Trucks Loading & Unloading OB	3.35
5	Wind Erosion & Maintenance - Stockpiles	1.95
6	Trucks Loading and Unloading coal	1.70
7	Bulldozers on Coal	0.50
8	Graders	0.36
9	Coal Screening	0.09
10	Blasting	0.05
11	Drilling	0.01
12	Material Transfer Coal	0.01
13	Material Transfer OB	0.00
14	Coal crushing	0.00

Table 2.4: Activity rank of the estimated controlled emissions by mass

3 PRACTICABILITY OF IMPLEMENTING ADDITIONAL BEST PRACTICE MEASURES

Based on the information presented in **Section 2** it is clear that Sunnyside already has a number of PM-control measures in place. With current controls, emissions of TSP, PM_{10} and $PM_{2.5}$ are all approximately 40% to 50% lower than with no controls in place.

The practicability associated with the implementation of each of the additional best practice measures (as documented within the Best Practice Report) was evaluated for the top four emission-generating activities. The evaluation was undertaken by the mine operators by taking into consideration the criteria outlined in the Guideline, as follows:

- Implementation costs.
- Regulatory requirements.
- Environmental impacts.
- Safety implications.
- Compatibility with current processes and proposed future developments.

The results of the evaluation are presented **Table 3.1** (haul roads), **Table 3.2** (bulldozers on overburden), **Table 3.3** (loading and unloading coal), **Table 3.4** (wind erosion on overburden), and **Table 3.5** (loading and unloading overburden).

Where a given measure was considered to be practicable according to each of the criteria examined, it was taken to be practicable overall. These methods were then taken forward for costing. Measures that were considered impractical according to one or more of the assessment criteria were not considered further.

It is important to note that the values presented assume the controls as presented in **Table 2.2**.

It is noted that for many of the top-ranking site activities existing controls are in place. Whilst further controls may be considered for these top-ranking activities, an assessment of the remaining site activities has also been undertaken to assess whether further controls may be appropriate. The remaining (lower ranking activities) have also been evaluated and are included in **Table 3.6**.

				Pract	icality	Evalu	ation	1									
										Potential re emission (eduction in dus t/y) after BPM	st Potent I total	Potential reduction in dust emission as % of total site dust emission (current <u>controls)</u>				
Best Practice Control		% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM ₁₀	PMos	тар	PMin	PMas		
Vehicle speed restrictions	Reduction from 75 km/hr to 50 km/hr	40- 75%	N	Y	Y	Y	N	N	Current speed limit on site is 60km/hr as per Surface Transport Mgmt Plan approved by DRE and not easily changed	194.1- 363.9	52.4- 98.2	5.2- 9.8	22%	20%	6%		
	Reduction from 65 km/hr to 30 km/hr	50- 85%	N	Y	N	Y	N	N	Reduction in productivity - not energy efficient if diggers waiting for trucks to return to circuit	242.6- 412.4	65.5- 111.3	6.5- 11.1	28%	25%	8%		
	Pave the surface	>90%	N	Y	Y	Y	N	N	Impractical to pave temporary haul roads	291.1	78.6	7.9	33%	30%	9%		
Surface improvements	Low silt aggregate	30%	N	Y	Y	Y	N	N	Silt content determined by in-situ material - not easily changed	145.6	39.3	3.9	17%	15%	5%		
	Oil and double chip surface	80%	N	N	N	N	N	N	Potential for environmental damage (spill)	97.0	26.2	2.6	11%	10%	3%		
	Watering (standard procedure)	10- 74%	Y	Y	Y	Y	Y	Y	Current practice	-	-	-	-	-	-		
	Watering Level 1 (2 L/m2/h)	50%	Y	Y	Y	Y	Y	Y	Measured at level 1	-	-	-	-	-	-		
Surface	Watering Level 2 (>2 L/m2/h)	75%	N			N			Measured at level 1. Level 2 watering is not practical as it makes the haul roads too slippery.	0.0	0.0	0.0	0%	0%	0%		
treatments	Watering grader routes	50%	N	Y	Y	Y	N	N	Not practical for road construction - better to water after road surface has been disturbed	242.6	65.5	6.5	28%	25%	8%		
	Watering twice a day for industrial unpaved road	55%	Y						Roads are watered once per hour	-	-	_	-	-	-		
	Suppressants	84%(d)	N						Not cost effective for scale of operation	407.6	110.0	11.0	47%	42%	13%		

Table 3.1: BPM to reduce particulate matter emissions from haul roads

				Practi	icality	Evalu	ation										
										Potential re	duction in du	st Potent	Potential reduction in dust emission as % of				
							1			emission (t/y) after BPN	1 total	site dust emis	sion (current	controls)		
Best Practice Control		% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}		
	Hygroscopic salts	45%- 82%(e)	Ν	Y			N	N	Not cost effective for scale of operation	218.4- 397.9	58.9- 107.4	5.9- 10.7	25%	23%	7%		
	Lignosulphonates	66- 70% (over 23 days)	N	Y			N	N	Not cost effective for scale of operation	320.3- 339.7	86.5- 91.7	8.6- 9.2	37%	33%	10%		
	Polymer emulsions	70% over 58 days	N	Y			N	N	Not cost effective for scale of operation	339.7	91.7	9.2	39%	35%	11%		
	Tar and bitumen emulsions	70% over 20 days	N	Y			N	N	Not cost effective for scale of operation	339.7	91.7	9.2	39%	35%	11%		
	Sealed or salt- encrusted	-	Ν	Y			N	N	Not cost effective for scale of operation	0.0	0.0	0.0	0%	0%	0%		
		90t to 220t: 40%	N	Y	Y	Y	N	N	Trucks already 140t	194.1	52.4	5.2	22%	20%	6%		
	Use of larger	140t to 220t; 20%	N	Y	Y	Y	N	N	Not cost effective at this point in operation	97.0	26.2	2.6	11%	10%	3%		
Other	vehicles	140t to 360t: 45%	N	Y	Y	Y	N	N	Not cost effective at this point in operation	218.4	58.9	5.9	25%	23%	7%		
		100 t to 149 t	N	Y	Y	Y	N	N	Not cost effective at this point in operation	101.9	27.5	2.8	12%	11%	3%		
	Conveyors	>95%	N	N	Y	Y	N	N	Capital costs - not approved - energy consumption (no access to power grid)	388.2	104.8	10.5	44%	40%	12%		

					/ Evalı	uation	1		Potenti	al reduction mission (t/y	in dust)	Potent emission emissic	ial reduction as % of tota on (current co	in dust I site dust ontrols)
Best Practice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM _{2.5}	TSP	PMin	PM25
Minimise travel speed and distance	Not quantified	Y	Y	Y	Y	Y	Y	Locked in 2nd gear	-	-	-	-	-	-
Keep travel routes and materials moist	50%	N	Y	Y	N	N	N	Can keep travel routes moist but not coal/overburden during pushing	79.3	19.2	8.3	9%	7%	10%

Table 3.2: BPM to reduce particulate matter emissions from bulldozers on overburden

				Practi	icality	Evalu	lation			Potential r	eduction in dust (t/y) after BPM	emission	Potentia emission a emissior	al reduction i is % of total 1 (current co	n dust site dust ntrols)
Best Prac	tice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	РМ10	PM2.5	TSP	PM10	PM2.5
Avaidance	Bypass ROM	50%	N	Y	Y	Y	N	N	Not possible	9.7	4.7	1.0	1%	2%	1%
Avoluance	stockpiles	100%	Ν	Y	Y	Y	N	Ν	Not possible	75.3	13.5	1.9	9%	5%	2%
Truck or loader	Minimise drop height (10m to 5m)	30%	Y	Y	Y	Y	Y	Y	Always drop to the ground - drop height restricted to truck height	-	-	-	-	-	-
ROM coal	Water sprays on ROM pad	50%	N	Y	Y	Y	N	N	Water availability	37.6	6.7	1.0	4%	3%	1%
	Water sprays on ROM bin or sprays on ROM pad	50%	Y	Y	Y	Y	Y	Y	Sprays on conveyor on entry to bin	-	-	-	-	-	-
Truck or loader	Enclosed dump hopper (3 sides and a roof)	70%	N	Y	Y	Y	Y	Y	3 sides on hopper - but not a roof - cost implications and practicality of a roof.	35.9	8.2	1.4	4%	3%	2%
to ROM bin	Enclosed dump hopper (3 sides and a roof) plus water sprays	85%	N	Y	Y	N	N	N	3 sides on hopper - but not a roof - cost implications and practicality of a roof.	55.6	10.9	1.6	6%	4%	2%
	Enclosure with control device	90-98%	N	Y	Y	N	N	N	3 sides on hopper - but not a roof - cost implications and practicality of a roof.	62.2	11.7	1.7	7%	5%	2%

Table 3.3: BPM to reduce particulate matter emissions from loading and unloading coal

			l	Prac	ticality	/ Eva	luatio	n		Potential re	duction in du	ist emission	Potential as % of	reduction in du f total site dust	ist emission emission
				1						(1	/y) after BP	м	(current contro	ls)
Best Pract	tice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments						
Avoidance	Minimise pre-strip	100% per m2 of pre- strip avoided	Y	Y	Y	Y	Y	Y	In place on basis of restricting clearing for 12 months to coincide with flora/fauna requirements	-	PM10 -	P M2.5	-	PM10	PM2.5
	Watering	50%	N	Y	Y	N	N	N	Depends on water availability. Safety implications of slumping of emplacements.	26.2	13.1	2.0	3%	5%	2%
	Chemical suppressant s	70-84%	N	Y	Y	Y	N	N	Depends on water availability. Safety implications of slumping of emplacements.	36.7- 44.0	18.3- 22.0	2.8-3.3	4%	7%	3%
Surface stabilisation	Paving and cleaning	>95%	N	Y	Y	Y	N	N	Not practical to pave exposed areas	49.8	24.9	3.7	6%	10%	4%
	Application of gravel to stabilise disturbed open areas	84%	N	Y	Y	?	N	N	Additional disturbance to win the gravel - cost and impractical	44.0	22.0	3.3	5%	9%	4%
	Rehabilitati on goals	99%	Y	Y	Y	Y	Y	Y	Current practice	-	-	-	-	-	-
	Fencing, bunding, shelterbelts or in-pit dump	30-80%	Y	Y	Y	Y	Y	Y	In pit dumping when practical	-	-	-	-	-	-
Wind speed reduction	Vegetative ground cover	70%	Y	Y	Y	Y	Y	Y	Seeded to cover as soon as practicable once reshaped to grade.	-	-	-	-	-	-
	Primary rehabilitatio n	-	Y	Y	Y	Y	Y	Y	Seeded to cover as soon as practicable once reshaped to grade.	-	-	-	-	-	-

Table 3.4: BPM to reduce particulate matter emissions from wind erosion of overburden dumps

				Praci	ticality	/ Eva	luatio	n		Potentia emissio	I reduction on (t/y) aft	n in dust er BPM	Potent emissi dust	ial reductio on as % of emission (controls)	on in dust total site current
ΑCTIVITY	Best Practice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM2.5	TSP	PMie	PM25
Minimising drop height (trucks)	Reduce from 3m to 1.5m	30%	Y	Y	Y	Y	Y	Y	Dump drop height limited to 20m instead of 40m	-	-	-	-	-	-
Water applicat	ion	50%	N	Y	Y	Ν	N	N	Not practical	11.7	5.5	0.8	1%	2%	1%
Modify activitie conditions	es in windy	Not quantifie d	Y	Y	Y	Y	Y	Y	Real time air quality monitoring addresses this with procedures in place to stand down dusty activities.	-	-	-	-	-	-
Minimising drop height (Excavator)	Reduce from 3m to 1.5m	30%	Y	Y	Y	Y	Y	Y	Implement best practice Excavator drop heights and included in training manual - have external trainer	_	-	-	_	-	-

Table 3.5: BPM to reduce particulate matter emissions from loading and unloading overburden

					Praci	ticality	/ Eva	luatio	n		Potentia emissio	l reduction on (t/y) aft	n in dust ter BPM	Potent emissio dust	ial reduction on as % of t emission (c controls)	ı in dust otal site urrent
ACTIVITY	Best Pra	ctice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}
Blasting	Design: o to avoid unfavour weather	delay shot able conditions	Not quantified	Y	Y	Y	Y	Y	Y	Current practice	-	-	-	-	-	-
	Design: i area blas	minimise sted	Not quantified	N	Y	Y	N	N	N	Not always practical for safety and operational reasons	-	-	-	-	-	-
Graders	Grader s reductior 16km/hr	peed 1 from to 8 km/hr	75%	Y						Grader currently operate 8km/hr	-	-	-	-	-	-
Scrapers on topsoil	Soil natu artificiall	rally or y moist	-	Y							-	-	-	-	-	-
Drilling	Wet	Water injection sprays while drilling	3-96% NIOSH document	Y	Y	Y	Y	Y	Y	All rigs use water injection	_	-	-	-	-	-
	Dry collecti	Fabric filters	99	N	N	N	Ν	N	N		0.4	0.8	0.0	0%	0%	0%
	on	Cyclone	80-90	Ν	Ν	Ν	Ν	Ν	Ν		0.1	0.6	0.0	0%	0%	0%

Table 3.6: BPM to reduce particulate matter emissions from remaining activities

				Practi	cality	' Eva	luatio	n		Potential I emission	reduction i (t/y) after	n dust • BPM	Potentia emissio dust e	I reduction n as % of t mission (c controls)	n in dust otal site urrent
ΑCTIVITY	Best Practice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM2.5	TSP	PM ₁₀	PM _{2.5}
	Application of water at transfers	50%	Y	Y	Y	Y	Y	Y	Current practice	-	-	-	-	-	-
	Wind shielding - roof or side wall	40%	Y	Y	Y	Y	Y	Y	Current practice	-	-	-	-	-	-
Conveyors	Wind shielding - roof AND side wall	70%	N	Y	Y	Y	Y	Y	BPM Costed	35.9	8.2	1.4	4%	3%	2%
	Belt cleaning and spillage minimisation	Not quantifi ed	Y	Y	Y	Y	Y	Y	In place and operating - belts have scrapers in place	-	-	-	-	-	-
T	Enclosure	70%	Y	Y	Y	Y	Y	Y	At top of bin and crusher output	35.9	8.2	1.4	4%	3%	2%
Transfers	Enclosure and fabric filters	-	N	Y	Y	Y	N	N	Not practical	-	-	-	-	-	-

				Practi	icality	Eval	uation			Potenti emissi	al reduction on (t/y) aft	in dust er BPM	Potenti emissio dust o	al reduction on as % of to emission (cu controls)	in dust otal site irrent
Best P	ractice Control	% control per OEH	Current Use	Regulatory	Environmental	Safety	Compatibility	Practicable Y/N	Comments	TSP	PM10	PM _{2.5}	TSP	PM10	PM _{2.5}
Wind Erosio	on and Maintenance -	- Coal Sto	ockpi	les											
Avoidance	Bypassing stockpiles	100%	N	Y	Y	Y	N	N	Not possible	37.1	13.0	2.0	4%	5%	2%
	Water sprays	50%	Y	Y	Y	Y	Y	Y	Sprays on conveyors and bins. Fixed sprays costed	-	-	-	-	-	-
	Chemical wetting agents	80- 99%	N	Y	Y	Y	Y	N	Not necessary	29.7	9,3	1.4	3%	4%	2%
Surface stabilisation	Surface crusting agent	95%	N	Y	Y	Y	Y	N	Stockpile residence time is very short - so impractical to apply	35.2	12.1	1.8	4%	5%	2%
	Carry over wetting from load in	80%	N	Y	Y	Y	Y	N	Not practical	29.7	9.3	1.4	3%	4%	2%
	Silo with bag house	95- 100%	Y	Y	Y	Y	Y	Y	Bins enclosed	-	-	-	-	-	-
Enclosure	Cover storage pile with a tarp during high winds	99%	N	Y	Y	N	N	N	Not practical	36.7	12.8	1.9	4%	5%	2%
	Vegetative windbreaks	30%	N	Y	Y	N	N	N	Safety risk with equipment near trees etc	11.1	0.0	0.0	1%	0%	0%
	Reduced pile height	30%	Y	Y	Y	Y	Y	Y	Stockpile height limited due to constant load out from site	11.1	0.0	0.0	1%	0%	0%
Wind speed	Wind screens/fences	75- >80%	N	Y	Y	N	N	N	Safety risk	27.8	8.4	1.3	3%	3%	1%
reduction	Pile shaping/orientation	<60%	N	Y	Y	Y	N	N	limitations reduces effectiveness	0.0	0.0	0.0	0%	0%	0%
	Erect 3-sided enclosure around storage piles	75%	N	Y	Y	N	N	N	As above	27.8	8.4	1.3	3%	3%	1%

3.1 Estimated Emissions for Practical BPM

Table 3.7 summarises the additional BPM identified as practicable (not accounting for cost) for mining activities at Sunnyside. The dust emissions after implementing the BPM are presented and the potential reduction of emissions as a percentage of the total emissions. Calculations indicate that the greatest potential reductions in emissions are achieved through the use of larger vehicles for hauling. Further consideration of costs is provided in **Section 3.2**.

Mining Activity	ВРМ	Dust Ei	nissions af (t/y)	ter BPM	Potent % of	tial Reduc total site emissior	ction as e dust 1
		TSP	PM ₁₀	PM _{2.5}	TSP	PM ₁₀	PM _{2.5}
Hauling on unsealed	Use of larger	388.2	104.8	10.5	10.5%	10.1%	5.8%
roads 1	trucks						
Wind Erosion and	Water sprays on	18.55	6.51	0.98	2.0%	2.5%	2.2%
Maintenance –	stockpiles						
Stockpiles ²							
Conveyors ³	Shielding – roof						
	and side wall						

Table 3.7: Estimated Emissions for Practical BPM

Note: ¹Control efficiency of 20% assumed. ²Emissions reductions are calculated for wind erosion on stockpiles plus dozers operating on stockpiles. ³Wind erosion from surfaces of the conveyors not estimated as not considered a significant source.

3.2 Implementation Cost Evaluation

For all measures identified in **Table 3.7**, an additional cost evaluation was completed and summarised below. Full details provided in **Appendix C**.

- For hauling on unsealed roads, the net cost per tonne of PM₁₀ abated as a result of increasing haul truck sizes would be of the order of \$520,000/tonne-PM₁₀ in the first year, \$213,000/tonne-PM₁₀ annually thereafter and a total of \$2.4 million/tonne-PM₁₀ over 10 years.
- For wind erosion and maintenance of coal stockpiles the net cost per tonne of PM₁₀ abated as a result of fixed water sprays was calculated to be in the order of \$342,000/tonne-PM₁₀ in the first year, \$35,000/tonne-PM₁₀ annually thereafter and a total of \$660,000/tonne-PM₁₀ over 10 years.
- For conveyors, emissions were estimated for transfer points, however wind erosion from the surfaces of conveyors was not considered as this is considered a very small source. The estimated total cost for the installation of side walls on the conveyors is in the order of \$24,000/tonne-PM₁₀ in the first year, \$4,000/tonne-PM₁₀ annually thereafter and \$60,000/tonne-PM₁₀ over 10 years. The reduction in emissions that this would achieve is expected to be minor, on the basis that the emission factor for wind erosion for TSP is 1 tonne/ha/year and the surface area for conveyors on site would be relatively small.

4 IMPLEMENTATION OF ADDITIONAL BPM

The remaining mine life for the Sunnyside Coal Mine is 2 years. The installation of additional BPM would have minimal benefit in reducing PM emissions and therefore not additional BPM are recommended for implementation.

4.1 Monitoring and tracking the Effectiveness of BPM

On the 9 May 2012, the EPA held an information session and workshop to provide feedback to consultants and mines on the dust PRPs received to date. Key recommendations from the workshop included using site specific data in deriving PM emissions estimates for the PRP and ongoing monitoring and reporting on the effectiveness of controls.

Given that the Sunnyside Coal Mine will be exhausted within 2 years, the implementation of additional monitoring and reporting requirements is not expected to provide any additional benefit in terms of reducing PM emissions or tracking performance of existing controls.

5 REFERENCES

EPA (2012) EPA Presentation Tuesday 8th May 2012 "Dust Stop PRP Stage 1 Consultant Workshop".

Donnelly, S.-J., Balch, A., Wiebe, A., Shaw, N., Welchman, S., Schloss, A., Castillo, E., Henville, K., Vernon, A., Planner, J. (2011). "NSW Coal Mining Benchmarking Study: International Best Practice Measures to Prevent and / or Minimise Emissions of Particulate Matter from Coal Mining" Prepared by Katestone Environmental Pty Ltd for Office of Environment and Heritage June 2011.

Heggies (2007). "Air Quality Assessment: Sunnyside Coal Mine, Via Gunnedah" Prepared by Heggies Pty Ltd.

Namoi Mining (2011) "Annual Environmental Management Report for the Sunnyside Mine" Prepared by Namoi Mining Pty Ltd

OEH (2011). Coal Mine Particulate Matter Control Best Practice - Site-specific determination guideline. November 2011. New South Wales Office of Environment and Heritage, Sydney. November 2011.

http://www.environment.nsw.gov.au/resources/air/20110813coalmineparticulate.pdf

USEPA (1998). AP-42 Compilation of Emission Factors, Section 13.2.4 – Western Surface Coal Mining, October 1998. <u>http://www.epa.gov/ttnchie1/ap42/ch11/final/c11s09.pdf</u>

USEPA (2004). AP-42 Compilation of Emission Factors, Section 11.19.2 - Crushed Stone Processing and Pulverized Mineral Processing, August 2004. <u>http://www.epa.gov/ttnchie1/ap42/ch11/final/c11s1902.pdf</u>

USEPA (2006a). AP-42 Compilation of Emission Factors, Section 13.2.2 - Unpaved Roads. November 2006. <u>http://www.epa.gov/ttnchie1/ap42/ch13/final/c13s0202.pdf</u>

USEPA (2006b). AP-42 Compilation of Emission Factors, Section 13.2.4 - Aggregate Handling And Storage Piles, November 2006. <u>http://www.epa.gov/ttnchie1/ap42/ch13/final/c13s0204.pdf</u>

APPENDIX A: EMISSION FACTOR EQUATIONS

Table A1: Emission factors for mining activities

Activit	У	Unite	TSD Emission Easter	DM Emission Easter	DM Emission Easter	Sourco	
Code	Description	Units				Source	Notes
1.01	Vegetation removal with scrapers						
2.01	Topsoil removal with scrapers	kg/t	0.029	No data, assumed to be zero	No data, assumed to be zero	AP-42 11.9.7 Table 11.9-4	-
2.02	Topsoil removal with bulldozers/excavators	kg/t	$2.6 \times \frac{S^{1.2}}{M^{1.3}}$	$0.3375 imes rac{S^{1.5}}{M^{1.4}}$	0.105 × TSP	AP-42 11.9.7 Table 11.9-2	-
2.03	Topsoil loading and unloading	kg/t	$0.74 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.35 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.053 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	AP-42 13.2.4	Equation for aggregate storage piles
2.04	Topsoil hauling	kg/VKT	$\left(\frac{0.4536}{1.6093}\right) \times 4.9 \times \left(\frac{s}{12}\right)^{0.7}$ $\times \left(\frac{W \times 1.1023}{3}\right)^{0.45}$	$\left(\frac{0.4536}{1.6093}\right) \times 1.5 \times \left(\frac{s}{12}\right)^{0.9} \times \left(\frac{W \times 1.1023}{3}\right)^{0.45}$	$ \left(\frac{0.4536}{1.6093}\right) \times 0.15 \times \left(\frac{s}{12}\right)^{0.9} \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	AP-42 13.2.2	Equation for wheel- generated particles from unpaved roads
3.01	Overburden drilling	kg/hole	0.59	$0.52 \times TSP$ (PM ₁₀ ratio assumed same as blasting AP- 42 11.9.7 Table 11.9- 2)	0.03 × TSP (PM _{2.5} ratio assumed same as blasting AP-42 11.9.7 Table 11.9-2)	AP-42 11.9.7 Table 11.9-4	-
3.02	Overburden blasting	kg/blast	$0.00022 \times A^{1.5}$	0.52 × TSP	0.03 × TSP	AP-42 11.9.7 Table 11.9-2	-
3.03	Overburden draglines	kg/bcm	$0.0046 imes rac{d^{1.1}}{M^{0.3}}$	$0.002175 \times \frac{d^{0.7}}{M^{0.3}}$	0.017 × TSP	AP-42 11.9.7 Table 11.9-2	-
3.04	Overburden bulldozing (ripping, pushing, clean-up)	kg/t	$2.6 \times \frac{S^{1.2}}{M^{1.3}}$	$0.3375 \times \frac{S^{1.5}}{M^{1.4}}$	0.105 × TSP	AP-42 11.9.7 Table 11.9-2	-
3.05	Overburden loading and unloading	kg/t	$0.74 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.35 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.053 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	AP-42 13.2.4	-

6680 Sunnyside PRP Response Report R1.Docx Sunnyside Coal Mine Particulate Matter Control Best Practice Pollution Reduction Program PRP Response Report Whitehaven Coal Pty Ltd. | PAEHolmes Job 6680

Activity	/	Unite	TCD Emission Easter	DM Emission Easter	DM Emission Easter	Source	
Code	Description	Units	ISP Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor	Source	Notes
3.06	Overburden hauling	kg/VKT	$ \left(\frac{0.4536}{1.6093}\right) \times 4.9 \times \left(\frac{s}{12}\right)^{0.7} \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	$ \left(\frac{0.4536}{1.6093}\right) \times 1.5 \times \left(\frac{s}{12}\right)^{0.9} \\ \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	$ \left(\frac{0.4536}{1.6093}\right) \times 0.15 \times \left(\frac{s}{12}\right)^{0.9} \\ \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	AP-42 13.2.2	Equation for wheel- generated particles from unpaved roads
4.01	Coal drilling	kg/hole	0.59	0.52 × TSP (PM ₁₀ ratio assumed same as blasting AP- 42 11.9.7 Table 11.9- 2)	0.03 × TSP (PM _{2.5} ratio assumed same as blasting AP-42 11.9.7 Table 11.9-2)	AP-42 11.9.7 Table 11.9-4	-
4.02	Coal blasting	kg/blast	$0.00022 \times A^{1.5}$	0.52 × TSP	0.03 × TSP	AP-42 11.9.7 Table 11.9-2	-
4.03	Coal bulldozing (ripping, pushing, clean-up)	kg/t	$35.6 \times \frac{s^{1.2}}{M^{1.4}}$	$6.33 \times \frac{s^{1.5}}{M^{1.4}}$	0.022 x TSP	AP-42 11.9.7 Table 11.9-2	-
4.04a 4.04b 4.04c	Coal truck loading and unloading	kg/t	$\frac{0.58}{M^{1.2}}$	$\frac{0.75 \times 0.0596}{M^{0.9}}$	0.019 × TSP	AP-42 11.9.7 Table 11.9-2	-
4.05	Coal hauling	kg/VKT	$ \left(\frac{0.4536}{1.6093}\right) \times 4.9 \times \left(\frac{s}{12}\right)^{0.7} \\ \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	$ \begin{pmatrix} 0.4536\\ 1.6093 \end{pmatrix} \times 1.5 \times \left(\frac{s}{12}\right)^{0.9} \\ \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	$ \left(\frac{0.4536}{1.6093}\right) \times 0.15 \times \left(\frac{s}{12}\right)^{0.9} \\ \times \left(\frac{W \times 1.1023}{3}\right)^{0.45} $	AP-42 13.2.2	Equation for wheel- generated particles from unpaved roads
4.06	Coal transfer operations	kg/t	$0.74 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.35 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	$0.053 \times 0.0016 \times \left(\frac{\left(\frac{U}{2.2}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$	AP-42 13.2.4	-
4.07	Coal screening	kg/t	0.0125	0.0043	No data, assumed to be zero	AP-42 11.19.2 Table 11.19.2-1	-
4.08	Coal crushing	kg/t	0.0027	0.0012	No data, assumed to be zero	AP-42 11.19.2 Table 11.19.2-2	-

Activit	Ŋ	11		DM Enviroim Ender		6	
Code	Description	Units	ISP Emission Factor	PM ₁₀ Emission Factor	PM _{2.5} Emission Factor	Source	Notes
4.09	Coal bulldozing (ROM stockpiles)	kg/t	$35.6 \times \frac{s^{1.2}}{M^{1.4}}$	$6.33 imes rac{S^{1.5}}{M^{1.4}}$	0.022 x TSP	AP-42 11.9.7 Table 11.9-2	-
4.10	Coal bulldozing (product stockpiles)	-	-	-	-	-	Included in equation for wind erosion on active coal stockpiles
5.01	Wind erosion on exposed areas, overburden dumps	kg/ha/h	0.1	0.5 × TSP (0.5 from AP-42 13.2.5)	0.075 × TSP (0.075 from AP-42 13.2.5)	AP-42 11.9.7 Table 11.9-4 ^(a)	-
5.02	Wind erosion on active coal stockpiles	kg/ha/h	1.8 × u	0.5 × TSP (0.5 from AP-42 13.2.5)	0.075 × TSP (0.075 from AP-42 13.2.5)	AP-42 11.9.7 Table 11.9-2	-
6.01	Grading roads	kg/VKT	$0.0034 \times S^{2.5}$	0.00336 × S ^{2.0}	$0.0001054 \times S^{2.5}$	AP-42 11.9.7 Table 11.9-2	-
7.01	Rehab bulldozing	kg/t	$2.6 \times \frac{S^{1.2}}{M^{1.3}}$	$0.3375 \times \frac{S^{1.5}}{M^{1.4}}$	0.105 × TSP	AP-42 11.9.7 Table 11.9-2	Bulldozing overburden & front-end loaders on overburden

Where:

- S = mean vehicle speed (km/h)
- M = material moisture content (%)
- U = mean wind speed (m/s)
- W = mean vehicle weight (tonnes)
- s = material silt content (or surface silt content in unpaved roads) (%). Silt is the fraction of particles smaller than 75 µm in diameter in the road surface material.
- A = horizontal area (m²)
- d = drop height (m)
 - (a) An alternative method for the estimation of wind erosion from exposed areas is contained within AP-42 Chapter 13.2.5. The method takes into account site specific wind data, site-specific erodible material properties (threshold friction velocity, particle size distribution of the material eroded) and the frequency of material disturbance. Notwithstanding the data intensiveness of this approach, exercises in applying this method in mines to date has resulted in little or no wind initiated dust lift-off emissions being predicted from active mine sites. As such, the AP-42 Chapter 11.9.7 approach has been adopted. This is considered both conservative and applicable to the estimation of wind erosion emissions over the longer term.

APPENDIX B: MINE ACTIVITY DATA

Information required for emissions inventory calculation

1. VEGETATION CLEAR	ANCE AND	REMOV	AL		
Activity	Calculation	Variable	Variable description	Value	Units
Construction of the second	Tabaash	N Scrape, Veg	Number of scrapers	2	-
Scraping and removing vegetation	Intensity	A Scrape, Veg	Area stripped	16.93	ha/year
2. TOPSOIL (AND SUBS	SOIL) REMO	OVAL			
Activity	Calculation	Variable	Variable description	Value	Units
		N Strip Tapsail	Number of scrapers stripping topsoil	2	-
Stripping with scrapers	Emission factor	W Strip, Topsoil	Amount of material stripped	72,140	tonnes/year
		N Strip Tappail	Number of dozers stripping topsoil	0	-
OR	Intensity	T Strip Topsoil	Time spent by each dozer on topsoil	0	hours/year
Stripping with		S Strip, Topsoil	Silt content of topsoil	10	%
bundozers, excuvators	Emission factor	M Strip. Topsoil	Moisture content of topsoil	2.5	%
				00.046	
Londing and employing	Intensity	W Load, Topsoil	Amount topsoil handled	89,316	tonnes/year
Loading and emplacing	Emission factor	U Load, Topsoil	Average wind speed	2	m/s
		M Load, Topsoil	Moisture content of topsoil	2.5	%
	Intensity	W Haul, Topsoil	Amount topsoil handled	89,316	tonnes/year
		wt _{Haul, Topsoil}	Weight per trip (vehicle payload)	34	tonnes
Hauling topsoil	Emission factor	L Haul, Topsoil	Length of return trip	1.2	km
	LINISSION Idetoi	W Haul, Topsoil	Mean gross vehicle weight for hauling topsoil	86	tonnes
		S Haul, Topsoil	Silt content of haul road	2	%
3. OVERBURDEN (AND	INTERBUR	DEN) RE	MOVAL		
3. OVERBURDEN (AND Activity	INTERBUR Calculation	DEN) RE Variable	MOVAL Variable description	Value	Units
3. OVERBURDEN (AND Activity Drilling	INTERBUR Calculation Intensity	DEN) RE Variable N Drill,OB	MOVAL Variable description	Value 2,480	Units holes/year
3. OVERBURDEN (AND Activity Drilling	INTERBUR Calculation Intensity Intensity	DEN) RE Variable N _{Drill,OB}	MOVAL Variable description Number of holes drilled per year Number of blasts per year	Value 2,480 15	Units holes/year blasts/year
3. OVERBURDEN (AND Activity Drilling Blasting	INTERBUR Calculation Intensity Intensity Emission factor	DEN) RE Variable N Drill,OB N Blast,OB A Blast,OB	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast	Value 2,480 15 6,145	Units holes/year blasts/year m²/blast
3. OVERBURDEN (AND Activity Drilling Blasting	INTERBUR Calculation Intensity Intensity Emission factor Intensity	DEN) RE Variable N prill, 08 N Blast, 08 A Blast, 08 V prag, 08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material	Value 2,480 15 6,145 0	Units holes/year blasts/year m ² /blast m ³
3. OVERBURDEN (AND Activity Drilling Blasting Draglines	INTERBUR Calculation Intensity Intensity Emission factor Intensity	DEN) RE Variable N prill,08 N Blast,08 A Blast,08 V prag,08 d prag,08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance	Value 2,480 15 6,145 0 0	Units holes/year blasts/year m ² /blast m ³ m
3. OVERBURDEN (AND Activity Drilling Blasting Draglines	INTERBUR Calculation Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden	Value 2,480 15 6,145 0 0 0 2	Units holes/year blasts/year m²/blast m³ m %
3. OVERBURDEN (AND Activity Drilling Blasting Draglines	INTERBUR Calculation Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08 W Load,08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled	Value 2,480 15 6,145 0 0 0 2 10,157,388	Units holes/year blasts/year m²/blast m³ m % BCM/year
3. OVERBURDEN (AND Activity Drilling Blasting Draglines	INTERBUR Calculation Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08 W Load,08 d Load,08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing	INTERBUR Calculation Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08 W Load,08 d Load,08 U Load,08	MOVAL Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing	INTERBUR Calculation Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08 d Load,08 d Load,08 U Load,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2 2	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s %
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 V Drag,08 d Drag,08 M Drag,08 W Load,08 U Load,08 U Load,08 W Load,08 W Load,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden	Value 2,480 15 6,145 0 0 2 10,157,388 2.2 2 2 2 10,157,388	Units holes/year blasts/year m ² /blast m ³ m % BCM/year t/m ³ m/s % BCM/year
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill, OB N Blast, OB A Blast, OB V Drag, OB d Drag, OB M Drag, OB M Drag, OB U Load, OB U Load, OB M Load, OB M Load, OB	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2 2 2 10,157,388 2.2	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ % BCM/year t/m³
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill, OB N Blast, OB A Blast, OB d Drag, OB d Drag, OB M Drag, OB d Load, OB d Load, OB d Load, OB M Load, OB M Load, OB d Haul, OB	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload)	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2 2 10,157,388 2.2 2 10,157,388	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill, OB N Drill, OB N Blast, OB A Blast, OB V Drag, OB M Drag, OB M Drag, OB M Load, OB M Load, OB M Load, OB M Load, OB M Haul, OB M Haul, OB L Haul, OB	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 10,157,388	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes km
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 d Drag,08 M Drag,08 M Drag,08 M Load,08 U Load,08 M Haul,08 M Haul	Workshift Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip Gross vehicle weight	Value 2,480 15 6,145 0 0 0 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 10,157,388	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s BCM/year t/m³ tonnes km
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 d Drag,08 M Drag,08 M Drag,08 d Load,08 d Load,08 U Load,08 M Load,08 M Load,08 M Haul,08 L Haul,08 W Haul,08 E Haul,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip Gross vehicle weight Silt content of haul road	Value 2,480 15 6,145 0 0 2 2 10,157,388 2.2 2 2 10,157,388 2.2 10,157,388 2.2 150 1.9 1.9 246 6.4	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes km tonnes km
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Blast,08 A Blast,08 d Drag,08 M Drag,08 M Drag,08 M Drag,08 M Load,08 U Load,08 U Load,08 M Load,08 M Haul,08 L Haul,08 W Haul,08 S Haul,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip Gross vehicle weight Silt content of haul road	Value 2,480 15 6,145 0 0 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 2 10,157,388 2.2 2 2 2 2 2 3 2 2 3 2 3 2 3 2 3 2 3	Units holes/year blasts/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes km tonnes km
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Bils5,08 A Bils5,08 A Bils5,08 d Drag,08 M Drag,08 M Drag,08 M Load,08 d Load,08 U Load,08 M Load,08 M Load,08 M Load,08 M Haul,08 C Haul,08 M Haul,08 S Haul,08 S Haul,08 T Dozer,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip Gross vehicle weight Silt content of haul road Number of buildozers working on overburden	Value 2,480 15 6,145 0 0 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 10,157,388 2.2 2 10,157,388 2.2 10,157,388 2.2 2 4,737,70	Units holes/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes km tonnes % %
3. OVERBURDEN (AND Activity Drilling Blasting Draglines Loading and emplacing Hauling OB	INTERBUR Calculation Intensity Emission factor Intensity Emission factor Intensity Emission factor Intensity Emission factor	DEN) RE Variable N Drill,08 N Drill,08 N Blast,08 A Blast,08 A Blast,08 V Drag,08 M Drag,08 M Drag,08 M Drag,08 M Load,08 U Load,08 U Load,08 M Load,08 M Load,08 M Haul,08 C Haul,08 M Haul,08 S Haul,08 N Draze,08 S Daze,08 S Doze,08	Variable description Number of holes drilled per year Number of blasts per year Area per blast Volume of material Drop distance Moisture content of overburden Overburden amount handled Density of overburden Average wind speed Moisture content of overburden Overburden amount hauled Density of overburden Weight per trip (vehicle payload) Length of return trip Gross vehicle weight Silt content of bulldozers working on overburden Number of bulldozers working on overburden Silt content of overburden	Value 2,480 15 6,145 0 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 2 10,157,388 2.2 10	Units holes/year m²/blast m³ m % BCM/year t/m³ m/s % BCM/year t/m³ tonnes km tonnes km tonnes % %

3. COAL REMOVAL					
Activity	Calculation	Variable	Variable description	Value	Units
	Intensity	N _{Dozer,Coal}	Number of dozers working on coal removal	1	-
Buildozora rinning (nuching (cloon-up	Intensity	T Dozer, Coal	Time spent by each dozer on coal removal	1,429.10	hours/year
bundozers ripping/ pusining/ clean-up	Emission factor	S Dozer,Coal	Silt content of coal	6.2	%
	Emission factor	M Dozer, Coal	Moisture content of coal	9	%
Drilling	Intensity	N Drill,Coal	Number of holes drilled per year	0	holes/year
	Intensity	N Blast.Coal	Number of blasts per year	15	blasts/year
Blasting	Emission factor	A Blast, Coal	Area per blast	0	m²/blast
All truck loading and unloading	Intensity	W Load,Coal	Total weight loaded and unloaded	1,080,395	tonnes/year
coal > stockpile, ROM coal > hopper, etc.)	Emission factor	M Load,Coal	Moisture content of coal	9	%
	Intensity	W Haul,Coal	Coal amount hauled	1,080,395	tonnes/year
		wt _{Haul,Coal}	Weight per trip (vehicle payload)	50	tonnes
Hauling Coal	Emission factor	L Haul,Coal	Length of return trip	2.2	km
		W Haul,Coal	Gross vehicle weight	120	tonnes
		S _{Haul,Coal}	Silt content of ROM coal	6.2	%
All material transfer operations		W. Trans Cool	Weight handled/transferred	313 909	tonnes/vear
	Intensity	N Trans Coal	Number of handling, transfer points	4	-
(<i>e.g.</i> coal > ROM stockpile from conveyor, coal from ROM hopper to conveyor.	Emission factor	U Trans,Coal	Average wind speed	2	m/s
	Emission factor	M _{Trans,Coal}	Moisture content of coal	9	%
Screening	Intensity	W Screen,Coal	Amount Coal screened	313,909	tonnes/year
Crushing	Intensity	W Crush,Coal	Amount Coal Crushed	313,909	tonnes/year
	Tabaaalta	N Dozer,Coal	Number of dozers working on stockpiles	1	-
Dull de singer an DOM et esterille e	Intensity	T Dozer, Coal	Time spent by each dozer on stockpiles	238.1	hours/year
Buildozing on ROM stockplies	Emission faster	S Dozer,Coal	Silt content of coal	6.2	%
	Emission factor	M Dozer,Coal	Moisture content of coal	9	%
		N Dozer, Coal	Number of dozers working on stockpiles	1	-
	Intensity	T Dozer, Coal	Time spent by each dozer on stockpiles	238.1	hours/year
Buildozing on product stockpiles	Englander faut	S Dozer,Coal	Silt content of coal	6.2	%
	Emission factor	M Dozer, Coal	Moisture content of coal	9	%

4. WIND EROSION					
Activity	Calculation	Variable	Variable description	Value	Units
Exposed areas, including overburden dumps	Intensity	a Expos.,Wind	Surface area	59.84	ha
	Intensity	a Active, Wind	Surface area	1.18	ha
A stive cost stockwiles		S Active, Wind	Silt content	6.2	%
Active coal stockplies	Emission factor	P Active, Wind	No. of days with rainfall > 0.25 mm	72	days
		f Active, Wind	% of time with wind speed > 5.4 m/s	4.8	%

5. ROAD GRADING					
Activity	Calculation	Variable	Variable description	Value	Units
	Intoncity	N Grade	Number of graders employed at site	1	-
Road grading	Intensity	T _{Grade}	Utilisation Rate (or hours of operation)	2,335.3	%
	Emission factor	S _{Grade}	Mean vehicle speed	8	km/h

6. REHABILITATION					
Activity	Calculation	Variable	Variable description	Value	Units
		N Dozer, Rehab	Number of dozers working on rehab	1	-
	Intensity	T Dozer, Rehab	Time spent by each dozer on rehab	476.37	hours/year
Bulldozing on rehab		A Dozer, Rehab	Area of active rehab	14.7	ha
	Emission faster	S Dozer, Rehab	Silt content	10	%
	Emission factor	M Dozer, Rehab	Moisture content	2.5	%

APPENDIX C: COSTING

Cost of Implementation for Larger Trucks

MINING ACTVITY	Hauling on unsealed roads																			
Specific best practice measure	Use of Larger Trucks (140t - 220t) (20%)																			
Mass emissions through	TSP	388.2																		
application of best practice	PM10	104.8																		
(tonnes/year)	PM2.5	10.5																		
	TSP	485.2																		
Current emissions (tonnes/year) -	PM10	131.0																		
carrene condici 7570	PM2.5	13.099																		
Total emission reduction from use	TSP	97																		
of best practice measure	PM10	26																		
(tonnes/year)	PM2.5	3																		
Year																				
	Cat 793 x 2 - Assuming current 785's are replaced with 793's	\$ 8	8,000,000	\$-	\$	-	\$-	\$	-	\$	- :	\$ -	\$	-	\$	-	\$	-	\$	8,000,000
Cost specific capital items (list				\$ -	\$	-	\$ -	\$	-	\$	- :	\$-	\$	-	\$	-	\$	-	\$	-
each item)				\$ -	\$	-	\$ -	\$	-	\$	- :	\$-	\$	-	\$	-	\$	-	\$	-
				\$ -	\$	-	\$-	\$	-	\$		\$-	\$	-	\$	-	\$	-	\$	-
	Total capital costs	\$8,	,000,000	\$ -	\$	- 1	\$-	\$	- 1	\$	- 1	\$ -	\$	-	\$	- 1	\$	-	\$	8,000,000
the basis of the factor data at the state	parts x 4	\$	455,977	\$ 455,977	\$	455,977	\$ 455,977	\$	455,977	\$	455,977	\$ 455,97	7\$	455,977	\$	455,977	\$	455,977	\$	4,559,765
related on-costs (list each item)	body repair x 4	\$	303,153	\$ 303,153	\$	303,153	\$ 303,153	\$	303,153	\$	303,153	\$ 303,15	i3 \$	303,153	\$	303,153	\$	303,153	\$	3,031,525
		\$	-	\$-	\$	-	\$ -	\$	-	\$		\$-	\$	-	\$	-	\$	-	\$	-
Contraction of the sector state and	tyres x 4	\$	713,300	\$ 713,300	\$	713,300	\$ 713,300	\$	713,300	\$	713,300	\$ 713,30	0 \$	713,300	\$	713,300	\$	713,300	\$	7,133,000
other items (list each item)	fuel x 4	\$ 4	4,108,608	\$ 4,108,608	\$	4,108,608	\$ 4,108,608	\$	4,108,608	\$	4,108,608	\$ 4,108,60	8 \$	4,108,608	\$	4,108,608	\$	4,108,608	\$	41,086,080
		\$	-	\$-	\$	-	\$ -	\$	-	\$		\$-	\$	-	\$	-	\$	-	\$	-
	Total material and other costs	\$5,	,581,037	\$ 5,581,037	\$	5,581,037	\$ 5,581,037	\$	5,581,037	\$	5,581,037	\$ 5,581,03	7 \$	5,581,037	\$	5,581,037	\$	5,581,037	\$	55,810,370
	Total costs	\$ 13,	,581,037	\$ 5,581,037	\$	5,581,037	\$ 5,581,037	\$	5,581,037	\$	5,581,037	\$ 5,581,03	7 \$	5,581,037	\$	5,581,037	\$	5,581,037	\$	63,810,370
Estimate additional cost per tonne	TSP	\$	139,945	\$ 57,509	\$	57,509	\$ 57,509	\$	57,509	\$	57,509	\$ 57,5	09 \$	57,509	\$	57,509	\$	57,509	\$	657,529
of particulate matter suppressed	PM10	\$	518,396	\$ 213,032	\$	213,032	\$ 213,032	\$	213,032	\$	213,032	\$ 213,0	32 \$	213,032	\$	213,032	\$	213,032	\$	2,435,680
ITOIN TSP, PMID and PM2.5*	PM2.5	\$	5,183,964	\$ 2,130,315	5	2,130,315	\$ 2,130,315	\$	2,130,315	\$	2,130,315	\$ 2,130,3	15 \$	2,130,315	\$	2,130,315	\$	2,130,315	\$	24,356,802
Cost saving from implementing		\$	-	\$ -	\$	-	\$ -	\$	-	\$	- :	\$-	\$	-	\$	-	\$	-	\$	-
each best practice measure (list		\$	-	\$ -	\$	-	\$ -	\$	-	\$	- :	\$-	\$	-	\$	-	\$	-	\$	-
each item)		\$	-	\$ -	\$	-	\$ -	\$	-	\$	- :	\$-	\$	-	\$	-	\$	-	\$	-
	Total savings	\$	-	\$ -	\$	-	\$ -	\$	-	\$		ş -	\$	-	\$	-	\$	-	\$	-
	Net costs	\$ 13,	,581,037	\$ 5,581,037	\$	5,581,037	\$ 5,581,037	\$	5,581,037	\$	5,581,037	\$ 5,581,03	7 \$	5,581,037	\$	5,581,037	\$	5,581,037	\$	63,810,370
Estimate net cost per tonne of	TSP	\$	139,945	\$ 57,509	\$	57,509	\$ 57,509	\$	57,509	\$	57,509	\$ 57,50)9 \$	57,509	\$	57,509	\$	57,509	\$	657,529
particulate matter suppressed for	PM10	\$	518,396	\$ 213,032	\$	213,032	\$ 213,032	\$	213,032	\$	213,032	\$ 213,03	12 \$	213,032	\$	213,032	\$	213,032	\$	2,435,680
TSP, PM10 and PM2.5 * P	PM2.5	\$ 5	5,183,964	\$ 2,130,315	\$	2,130,315	\$ 2,130,315	\$	2,130,315	\$	2,130,315	\$ 2,130,31	5 \$	2,130,315	\$	2,130,315	\$	2,130,315	\$	24,356,802

MINING ACTVITY	Wind Erosion - Coal Stockpiles												
Specific best practice measure	Water Sprays (50%)												
Mass emissions through	TSP	18.55											
application of best practice	PM10	6.51											
(tonnes/year)	PM2.5	0.98											
	TSP	37.10											
Current emissions (tonnes/year) -	PM10	13.02											
	PM2.5	1.95											
Total emission reduction from use	TSP	19											
of best practice measure	PM10	7											
(tonnes/year)	PM2.5	1											
Year												10	Total
Cost specific speital items (list	Pipe from nearby bore, sprinklers with stands, generator, high pressure pump etc. incl. Installation	\$ 2,000,000	\$	-	\$ -	\$ 2,000,000							
each item)		\$ -	\$	-	\$ -								
		\$ -	\$	-	\$ -								
		\$ -	\$	-	\$ -								
	Total capital costs	\$2,000,000	\$	- 1	\$ -	\$ 2,000,000							
Labour costs including directly	Maintence and operating costs including fuel	\$ 230,000	\$	230,000	\$ 230,000	\$ 2,300,000							
related on-costs (list each item)		\$ -	\$	-	\$ -								
		\$ -	\$	-	\$ -								
		\$ -	\$	-	\$ -								
Cost of specific materials and other items (list each item)		\$ -	\$	-	\$ -								
,		\$ -	\$	-	\$ -								
	Total material and other costs	\$ 230,000	\$ 2	230,000	\$ 230,000	\$ 2,300,000							
	Total costs	\$2,230,000	\$ 2	230,000	\$ 230,000	\$ 4,300,000							
Estimate additional cost per tonne	TSP	\$ 120,213	\$	12,399	\$ 12,399	\$ 231,801							
of particulate matter suppressed	PM10	\$ 342,435	\$	35,318	\$ 35,318	\$ 660,301							
from TSP, PM10 and PM2.5*	PM2.5	\$ 2,282,900	\$	235,456	\$ 235,456	\$ 4,402,005							
Cost saving from implementing		\$ -	\$	-	\$ -								
each best practice measure (list		\$ -	\$	-	\$ -								
each item)		\$ -	\$	-	\$ -								
	Total savings	\$ -	\$	-	\$ -								
	Net costs	\$2,230,000	\$ 2	230,000	\$ 230,000	\$ 4,300,000							
Estimate net cost per tonne of	TSP	\$ 120,213	\$	12,399	\$ 12,399	\$ 231,801							
particulate matter suppressed for	PM10	\$ 342,435	\$	35,318	\$ 35,318	\$ 660,301							
TSP, PM10 and PM2.5 *	PM2.5	\$ 2,282,900	\$	235,456	\$ 235,456	\$ 4,402,005							

MINING ACTVITY	Conveyors and Transfers																			
Specific best practice measure	Wind Shielding - roof and wall (70%)																			
Mass emissions through	TSP	22.	6																	
application of best practice	PM10	4.0																		
(tonnes/year)	PM2.5	0.6																		
	TSP	75.	3																	
current emissions (tonnes/year) - current control 50%	PM10	13.	5																	
	PM2.5	1.9	30																	
Total emission reduction from use	TSP	53																		
of best practice measure	PM10	9																		
(tonnes/year)	PM2.5	1																		
Year																		10		Total
	Engineers investigation and drawings	\$	20,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	20,000
Cost specific capital items (list	Hire of equipment eg. EWP's	\$	20,000.00	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	20,000
each item)	Supply materials and install	\$	150,000.00	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	150,000
		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
	Total capital costs	\$	190,000	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	190,000
	Maintenance	\$	2,000	\$	2,000	\$	2,000	\$	2,000	\$	2,000	\$	2,000	\$	2,000	\$ 2,000	\$ 2,000	\$ 2,000	\$	20,000
Labour costs including directly related on-costs (list each item)	Operational access to conveyor	\$	35,000	\$	35,000	\$	35,000	\$	35,000	\$	35,000	\$	35,000	\$	35,000	\$ 35,000	\$ 35,000	\$ 35,000	\$	350,000
		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
Cost of specific materials and other items (list each item)		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
	Total material and other costs	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$ 37,000	\$ 37,000	\$ 37,000	\$	370,000
	Total costs	\$	227,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$ 37,000	\$ 37,000	\$ 37,000	\$	560,000
Estimate additional cost per tonne	TSP	\$	4,307	\$	702	\$	702	\$	702	\$	702	\$	702	\$	702	\$ 702	\$ 702	\$ 702	\$	10,626
of particulate matter suppressed	PM10	\$	24,042	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$ 3,919	\$ 3,919	\$ 3,919	\$	59,311
from TSP, PM10 and PM2.5*	PM2.5	\$	168,066	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$ 27,394	\$ 27,394	\$ 27,394	\$	414,613
Cost saving from implementing		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
each best practice measure (list		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
each item)		\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
	Total savings	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ -	\$ -	\$ -	\$	-
	Net costs	\$	227,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$	37,000	\$ 37,000	\$ 37,000	\$ 37,000	\$	560,000
Estimate net cost per tonne of	TSP	\$	4,307	\$	702	\$	702	\$	702	\$	702	\$	702	\$	702	\$ 702	\$ 702	\$ 702	\$	10,626
particulate matter suppressed for	PM10	\$	24,042	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$	3,919	\$ 3,919	\$ 3,919	\$ 3,919	\$	59,311
TSP, PM10 and PM2.5 *	PM2.5	\$	168,066	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$	27,394	\$ 27,394	\$ 27,394	\$ 27,394	\$	414,613

Cost of Implementation for Wind Shielding on Conveyors